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The following point of view is geometrically formulated and its consequences 
examined: the lattice of a crystalline body with a continuous distribution of 
dislocations can be locally described as an ideal lattice in non-Euclidean space. 
The types of distribution of dislocations are described by the classification of 
three-dimensional real Lie algebras. The influence of point defects and the elastic 
deformation field on the geometry of the material structure of a crystalline body 
with dislocations is examined. The case where a crystal with dislocations reacts 
as a body with internal rotational degrees of freedom is discussed. 

1. Introduction 

In  Part I of  this work (Trz~sowski, 1987) it is shown that  the descr ipt ion 
of  distorted crystal structure can be based on  a cons idera t ion  of a d is t r ibut ion 
of  lattice groups T(P) ,  P ~ ~ ,  described by the nonin tegrab le  d is t r ibut ion 

of  lattice bases ET~p), P c  9~: 

ET(e) = ( E , ( P ) ;  a = 1, 2, 3), Ea(P) c Tp(~) (1) 

where ~ denotes  a body  treated as a three-d imensional ,  smooth,  and  
connected  differentiable man i fo ld  (Part I, Section 3) and  Tp(~)  is the space 
tangent  to ~ in P c ~ .  This is equivalent  to describing a body  material  
structure with defects by in t roduc ing  a certain teleparal lel ism qb on the 
body,  i.e., the system of l inear  i somorphisms [Part I, formulas (75)-(77)]  

qb={qbvQ: T e ( ~ ) o  Tq(f~), P, Q c ~ }  

of  tangent  spaces, with the consistency condi t ion  

~)Qp o (~PR = (~QRr~ ~)pp = ident  �9 (P, Q, R c ~ )  
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336 Trz~sowski 

and with the regularity condition: if ve ~ T p ( ~ )  is a fixed vector and 

v_ = {v o, Q ~ ~ ; 1)o : ~) pQI.)p, ~J) eO e 1~ } 

then v is a smooth vector field, called a O-parallel vector field. 
We also endow the body with three Riemannian metric tensors: the 

right Cauchy-Green tensor _C [Part I, formula (71)] induced on the body 
by the deformation of its solid figure, the O-parallel tensor _g [Part I, formula 
(73)] describing the distortion of the metric structure of the lattice [Part I, 
commentary after formula (34)], and the tensor _G defined by the elastic 
distortion [Part I, formulas (86)-(88)]. So, there appears the problem of 
unifying this geometrical description. Tensors C and G have the character 
of field variables and that is why they are not useful in constructing the 
"geometric skeleton" of the theory. But the teleparallelism �9 and the 
O-parallel metric tensor g have the character of absolute objects, and that 
is why the analysis of the relations between them is of basic importance. 
In this paper it is proposed to interconnect these two geometric objects by 
an appropriate generalization of the notion of the lattice line (of the Bravais 
lattice; see Part I, Section 2). The basic consequence of such an approach 
to the description of the crystal structure distortion is examined. 

2. STRUCTURALLY UNIFORM CRYSTALLINE BODY 

Let �9 be a teleparallelism defined on the body ~ (see Section 1). It is 
known (e.g., Sikorski, 1972; Wolf, 1972) that for the connected differentiable 
manifold ~ there exists a natural one-one correspondence between 
teleparallelisms �9 and smooth trivializations 

E[O]=(_E1, _E2, _E3): ~ B ( ~ ) )  (2) 

of the frame bundle B(~) .  If ~ is additionally simply connected, then there 
also exists a one-one correspondence between teleparallelisms �9 on ~ and 
flat (i.e., with vanishing curvature tensor) linear connections A[O] on ~. 
Because of this we will assume in this paper that the body !/$ is additionally 
simply connected. 

If E [ r  is a trivialization (2) of the teleparallelism O, X = ( X  A) a 
coordinate system on ~ ,  and 

E a ( X ( P ) )  = e A ( x ( P ) )  OA e T e ( ~ )  
a 

E a ( X ( P ) )  = ~ A ( X ( P ) )  d X A  ~ T*p(~) (3) 

eA(x) ~A(X) = ~ ,  ~A(X)eB(X) = a~ 
a a 

then the teleparallelism connection A[r has the following form (Yano, 
1955): 
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")taB[ O] : - -~B deA = eA d~B = A Ac d X  c 
a a 

A A B c  : A B C  A : e A OB$C 
a 

(4) 

The curvature tensor of  the connection A[qb] vanishes and its torsion tensor 
has the following form: 

_S[O] = -_E`" | dE" = S B C  A d X  B | d X  c | 

SBC a ---- A [ s c ]  A : leA(ocaeB - oBaec) 
a 

(5) 

so that 

S[O] = 0r a = d~ (6) 

An arbi t rary O-parallel metric tensor _g has the form 

g_(X) = g`'bE`'(X)| E b ( X )  

= gaB(X) d x A @  d X  B (7) 

a b 
g A B ( X )  = ea(X)eB(X)gab, g`'b = const 

The vanishing of the torsion tensor _S[qb] implies the vanishing of the 
curvature tensor _R[g] of  the Levi-Civita connection for _g. But the inverse 
implication is not true. It follows from the fact that the case 

Rasc~ = 0 (8) 

[Part I, (62)] permits the existence of a nonintegrable moving frame (3) 
such that 

e A ( X )  = S A b X 
b Q a (  ) 

_Q(X)--II Qg(x)ll m Og(RS), I1~11 ~ GL(R3) 
(9) 

where Og(R 3) denotes the group of g -o~hogona lmat r ices  [PaN I, (8)]; in 
this case 

g A B ( X )  = aAB (10) 
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The volume form defined by tensor _g has the following form: 

t o (X )  = V T E ] ( X )  A E 2 ( X )  A E 3 ( X )  

= V e ( X )  d X  1 A d X  2 A d X  3 

V~(X) = [detllgA~(X)ll] 1/2 -= Vre (X)  
(11) 

e(X) = Idetll ~A(X)II l, VT = (detl[g~b II) '/~- 

where Vr is the volume of the undistorted lattice primitive cell [Part I, 
(3)-(7) and (33)]. 

Let us denote by V ~ the covariant derivative for the teleparallelism 
connection A[69]. Then [cf. (4) and (11)] 

and 

A A 
V_E~ =0,  VE ~ = 0  (12) 

A A 
V_g = O, VoJ = 0  (13) 

Equations (12) are a non-Euclidean generalization of the Euclidean con- 
stancy of the vector basis of  the ideal (i.e., without defects) lattice. Equations 
(13) are a consequence of  the postulate of metric uniformity [Part I, 
condition (33)] and they mean that the metric structure of distorted lattice 
is represented, in the space with teleparallelism, by the metric structure of 
the nondistorted lattice. 

The conditions (12) and (13) do not ensure the reconstruction of all 
basic properties of the Euclidean Bravais lattice. For example, the property 
of this lattice that the lattice lines (Part I, Section 2) are geodesics of 
Euclidean parallelism has been lost. It follows from the fact that the first 
relations of (13) is not enough to generalize the known theorem that each 
translation-invariant metric on R ~ is consistent with Euclidean parallelism. 
The generalization of this theorem on the space with teleparallelism was 
formulated by Wold (1972). Namely, teleparallelism 69 and the metric g 
(pseudo-Riemannian or Riemannian) on ~ are called consistent if: 

(i) g is 69-invariant, i.e., 

VP, Q~2)  V_v, w E re(2))  gp(V_,w_)=go(69opV_,69opW_) 

(ii) g-geodesics are, modulo parametrization, 69-geodesics. 
Let us quote, after Wolf, two theorems describing the basic properties of  
the given understood consistency of dp and g. 
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T h e o r e m  1. If  g is a qb-invariant metric (pseudo-Riemannian or- 
Riemannian) on the manifold 23, then the following conditions are 

equivalent: 
1. qb and g are consistent. 
2. If Fac is a Levi-Civita connection for g, Aac a teleparallelism 

connection for ~,  and S a n  c the torsion tensor for this teleparallelism 
connection, then 

F A c  = A a c  ~ S B C  A (14) 

T h e o r e m  2. Let (23, g) be a connected pseudo-Riemannian or Rieman- 
nian manifold. 23 has teleparallelism qb consistent with g if and only if there 
exists on 23 a global moving frame [_E~(P), P c  23; a = 1, 2, 3] such that: 

1. Each _E, is a Killing vector field on (23, g), i.e. [in the designations 
(3)1, 

g g 

V A e B  + V B e A  = O, eA = gABe B (15) 
a a a a 

where V g denotes covariant derivative for the connection FAo 
2. g has constant components in the base E~: 

V P ~ 2 3  gv(_Ea(P),Ub(P))=gab =COnst (16) 

T h e n  l~a are qb-parallel fields. 
If _S[d9] is the torsion tensor defined by (5), then (Yano, 1955; Wolf, 

1972) 

[_E,,, Eb] x "/gb_Ec (17) 

c 2 S a  c 
T a b  = - -  b , 

Hence (Wolf, 1972) 

and , from condition (14), 

S~b c = SABC~ceAe  B 
a b 

d E  ~ = S b ~ E  b ^ E c (18) 

F~,c : --Sbc a (19) 

So, if the teleparallelism qb and the q~-parallel metric g are consistent, then 
there is defined on 23 an affine connection of the form: 

a a 
o9 a = F~A d X  A, F A  = eA 

(20) 
a a c a a 

rob -- FbctO , Fbc = --She 

The formulas (18)-(20) cover the formulas (93), (95), and (96) considered 
in Part I (Trz~sowski, 1987). They mean that a consistent pair (qb, g) 
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describes the distribution of dislocations in the body. Namely [see Part I, 
commentary after formula (96)], the nonintegrability of  forms ~o a means 
the existence of dislocations in the body (i.e., linear defects of translation 
type), whereas forms oJ~, describe the type of distribution of these disloca- 
tions (see Section 3). For simplicity, we will also call such defined types of 
continuous distributed) dislocations. This should not be a source of miscon- 
ception, because our considerations do not concern single dislocations. In 
the literature, the density of  the distribution of dislocations is identified 
with the tensor a AB of  the form (e.g., KriSner, 1960; Minagava, 1979) 

Ol AB = eACD SDcB (21) 

where e ABc is a basic trivector of the Riemannian manifold (~ ,  g) [Part I, 
formula (65) with the change of  _C for the metric tensor _g]. 

Let us observe that conditions (15) and (16) mean that the vector fields 
_E,, a = 1, 2, 3, that define the teleparallelism r are so-called g-translations, 
that is, vector fields whose trajectories are g-geodesics (Yano, 1955). Con- 
sistency of r and g means that those g-geodesics are at the same time, with 
the same parametrization, d~-geodesics (Wolf, 1972). So, we can observe 
that if we want to reconstruct in a space with teleparallelism the consistency 
between metric structure and the system of lattice lines appearing in the 
case of an ideal Euclidean Bravais lattice, we have to limit our considerations 
to the following class of  material bodies: 

Definition. The connected material body ~ will be called a structurally 
uniform crystalline body if its material structure is described by a certain 
teleparallelism qb and a Riemannian metric g consistent with it. 

The global moving frame E[~b] = (_E,) on ~ satisfying conditions 1 
and 2 from Theorem 2 will be called the Bravais (moving)  f rame  of the 
structurally uniform body. Trajectories of the vector fields of the Bravais 
frame will be called metric lattice lines. From the properties of  infinitesimal 
motions in Riemannian space (Yano, 1955) it follows that two different 
vector fields of the Bravais frame cannot have the same metric lattice lines. 

From the condition (14) it follows that the curvature tensor of  the 
Levi-Civita connection for a metric tensor g consistent with the teleparallel- 
ism qb does not depend on the choice of _g and vanishes together with the 
vanishing of  the torsion tensor _Side]. Because of this, the curvature tensor 
will be called the adjoint curvature tensor of  the structurally uniform bo'd-y 
and will be denoted by _R[qb]. It can be shown that (Yano, 1955) 

g 

V_R[~] = Q (22) 

with 
R [  dP ]ABC D = S ABE S cE D (23) 
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and (Wolf, 1972) 

A 
V R[4~] =0  (24) 

Hence and from (17) it follows that in the Bravais frame (2) on 

R[~] .bcd  _ 1 .p . d - - a r a b r p c  = const (25) 

The Ricci tensor _R[~]A ~ 

R [ t ~ P ] A B  = R [ d P ] C A B  C (26) 

is also qb-parallel, with 

R[cb]~b R [ c b ] ~ b -  ' ~ p = c - -  - - 4 " Y a p  bc "~" const (27) 

3. CLOSED TELEPARALLELISM 

Let ~ be a structurally uniform body and (qb, g) a corresponding 
consistent pair. Let us denote by (~[~] the linear space of all qb-parallel 
vector fields on ~3. Then dim g6[dp] = 3 and fields v c ~[d)] are g-translations 
(Wolf, 1972). Let us denote by G[qb] the set of all (local) one-parameter 
groups ~ -- {~o,} generated by vector fields v ~ g6[qb]. From equation (17) it 
follows that we can introduce in G[qb] the structure of the local Lie group 
generated by the vector fields of the Bravais frame (2) if and only if 

Y~b = const (28) 

or, equivalently, 

A 
V S[~] = 0 (29) 

In the case (28), ~ [ ~ ]  is a Lie algebra of G[~]  and G[q~] acts on ~3 simply 
transitively (Yano, 1955). The simple transitivity of action of G[q~] on ~3 
means that each two sufficiently close points P, Q ~ ~ can be joined by the 
trajectory generated by a vector field v c ( ~ [ ~ ]  with this field defined 
uniquely. The teleparallelism q~ satisfying the condition (29) is called the 
closed teleparallelism (Stawianowski, 1985). If, for example, ~ is connected 
and there exists a flat metric tensor g consistent with ~,  then ~ is a closed 
teleparallelism; but from the condition (29) there does not follow the flatness 
of  g (Wolf, 1972). 

The case of a structurally uniform body with closed teleparallelism is 
important, because the property of the  transitivity of the Bravais lattice 
group action (Part I, Section 2) is then additionally reconstructed. But even 
in this case, this reconstruction is limited to a sufficiently small neighborhood 
of each point of the body (simply transitive group G[~]) .  
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We can observe (see Section 2) that a transition from the ideal crystal 
to the crystal with (continuously distributed) dislocations can be described 
as a transition from its lattice basis consisting of Euclidean translation to 
the Bravais frame in the form of infinitesimal g-translations. If the teleparal- 
lelism qb is closed, then the scope of this generalization is easy to examine, 
because in this came the vector field _Ea, a = 1, 2, 3, span a three-dimensional 
real Lie algebra (~[~b] of qg-parallel vector fields. Consequently, the problem 
is reduced to presenting the full classification of such Lie algebras. This 
classification is known (Barut and R~czka, 1977). 

The case of Abelian Lie algebra 

y;c=0 (30) 

is equivalent to the vanishing of the torsion tensor _S[~] of the material 
structure [equations (5) and (17)]. In this case the distortion is removable, 
i.e., the Bravais frame can, with a suitable deformation of the body, be 
transformed into the base of a certain ideal Bravais lattice [see (6) and Part 
I, (21)] and vectors _Ea become ordinary translations. 

If the Lie algebra ~[&] is simple, then the symmetric tensor Y,b of the 
form (Yano, 1955; Stawianowski, 1985) 

c d 
")lab Y a d  ")/bc = ")lAB e A C B  

a b 

(31) 
--�88 = 4SADcSsc D = R[  ~ ]AB 

where _R[q~]A~ is the Ricci tensor corresponding to the adjoint curvature 
tensor [formulas (26) and (27)], is nonsingular, 

detll Yah II # 0 (32) 

and defines a Killing metric of the Lie algebra ~[(b]. There are only two 
types of simple three-dimensional Lie algebras, represented by Lie algebra 
so(3) of the Euclidean rotation group SO(3) [tensor Y~b of signature 
( -  - - )]  and Lie algebra so(2, 1) of the three-dimensional Lorentz rotation 
group SO(2.1) [tensor Y~b of signature ( + + - ) ] .  The first case describes 
dislocations of rotation type. The second case describes dislocations of the 
Lorentz rotation type, i.e., dislocations of shear type [Part I, Appendix, 
(A7)-(A9)]. The first to point out the possibility of describing the continuous 
distribution of dislocations on the plane by a two-dimensioal Minkowski 
metric was 2;rrawski (1965). 

A nilpotent Lie algebra describes the dislocations of nonrotational type. 
For example, the Lie algebra of the Weyl group [Part I, Appendix, (A5), 
and formula (28)] is such an algebra. This group describes simple shear, 
i.e., deformations changing a cube into a parallelepiped. 
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Let us consider the case when @[qb] is e(2) or e(1, 1) type. These are 
algebras of  isometry groups of two-dimensional space, Euclidean [group 
E (2)] o_r pseudo-Euclidean [group E (1, 1)], respectively, and are examples 
of solvable Lie algebras. In this case the geometry of structural uniformity 
can be described with the help of  the foliation of the manifold ~ by the' 
family of surfaces. This foliation can be defined in a manner similar to the 
way in which it is applied in the geometric theory of Newtonian gravitation 
(e.g., Dixon, 1975). The surfaces of  this foliation will then be the supports 
of dislocations of two-dimensional lattices [of  rotation type, case e(2); or 
of Lorentz rotation type, case e(1, 1)], combined with the slips along these 
surfaces. Linear defects of this type are observed in crystalline materials 
with clearly marked lamellar structure (e.g., graphite or liquid crystals of 
the smectic B type). Then the slip starts up easily in the planes parallel to 
the layers and is almost impossible in the planes that are not layers. Because 
of  this, the location of dislocations (and also their Burgers vectors) is limited 
here to the planes that are layers (Hull and Bacon, 1984). 

Let us return to the case of dislocations of rotation type. We will call 
such dislocations disclinations. This definition results from our supposition 
that, in the infinitesimal version, line defects of the nontranslational type 
are rather a type of distribution of dislocations than a separate kind of  line 
defect [Part I, commentary after formula (96)]. It should be stressed that 
the above definition of  (continuously distributed) disclinations is not gen- 
erally accepted in the literature (e.g., de Wit, 1973; Minagava, 1979). 

4. INFINITESIMAL MOTIONS 

The discussion of properties of the closed teleparallelism (Section 3) 
revealed the basic role of  infinitesimal g-translations in the description of 
the influence of dislocations on the material structure of  the crystalline 
body. The question arises= what can be said about a structurally uniform 
body if we consider its infinitesimal g-motions? 

Let (~g, r ~g = (~ ,  g), be a structurally uniform crystalline body. If 
y is a vector field on ~g,  then we denote 

12g(Y) = g A B U A U  B (33) 

The field _u is called an infinitesimal g-motion if 

gig(u) = 0 (34) 

The condition (34) is equivalent to the condition that _u is the Killing vector 
field of  the metric g: 

VAI.,I B + V B U  A = O, l~l A = gABU B (35) 
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In equation (35) and also in other formulas in this section, V = V g, i.e., V 
denotes the covariant derivative based on the Levi-Civita connection for 
the metric g. In continuum mechanics, the infinitesimal motions correspond- 
ing to the right Cauchy-Green tensor [Part I, formula (71)] are called virtual 
displacements (Drobot, 1971). 

It can be easily observed that the condition (34) is a generalization of 
the condition defining a rigid system of points M in the point Euclidean 
space E, i.e., a condition of the form (Drobot, 1971) 

VP, Q ~ M ~(PQ.  PQ) = 0 (36) 
where PQ is the vector joining points P and Q, and the symbol B denotes 
a variation that is a derivation, i.e., linear operation satisfying the Leibniz 
rule with respect to the scalar product a .  b in the associated vector Euclidean 
space E (Part I, Appendix). The condition (36) is equivalent to the following 
two conditions [so-called Poisson theorem (Drobnot, 1971)]: 

(i) For two arbitrary points P, Q c M there exists a vector ~ such that 

8 P Q -  ~ x PQ = 0 (37) 

(ii) The vector ~ is constant on M, i.e., independent of the choice of 
points P, Q e M. 

The condition (35) allows us to construct the infinitesimal counterpart 
of the vector ~ through the introduction of the antisymmetric tensor tOA~ 
and vector (.O A dual to it, by 

tOAB = V A U B  , - W A = l eABCtOBc  (38) 

where e A B c  is the basic trivector of Riemannian manifold ~g [Part I, 
formula (65) with the change of _C for _g]. Then the condition (35) can b e  
written in a form analogous to condition (37) (Drobot, 1971): 

V AUB -- eaBctO C = 0 (39) 

However, the infinitesimal counterpart of condition (ii) from the 
Poisson theorem 

V AfD B "~- 0 (40) 

is not generally fulfilled, in order to state this, let us consider the adjoint 
curvature tensor _R[&]. From condition (35) it follows that (Nishioka, 1985) 

R[(~)]BcDAUA = ~ D ( V  BUC ) (41)  

From equations (39) and (41) and from the V-parallelism of the basic 
trivector e A S C  it follows that the infinitesimal g-motion should satisfy the 
condition 

R [  t~) ]BcDAUA = eBCA V DtO A (42) 
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Taking into consideration the fact that from (21) and (23) the representations 

s c B _  1 o c  (43) _EeADBOt , R [ ~ ] A B C  D 1 EF HD = ~eABEeCFHOI OL 

follow, and denoting 

KAB = ~ BO) a (44) 

we can write the condition (42) in the form 
1 Ac  OEUe (45) KAB ~ ~eBcDOI Ot 

From the asymmetry of the adjoint curvature tensor in the first two indices 
it follows that 

K A = 0 (46) 

The trace-free tensor _K defined by (44) will be called a curva tu re - tw i s t  tensor. 
This tensor is an infinitesimal counterpart of the tensor of  the same name 
considered in the continuous theory of  disclinations (de Witt, 1970). 

Let us denote by 0 AB the Einstein tensor corresponding to the adjoint 
curvature tensor, i.e. [Part I, formula (67)] 

0 AB = l e a C D e  BEFR [(I~] CDEF 

R [ f~ ]ABCD = e ABEeCDF OEF (47)  

R [ Cb ]ABCO = gDER [ ~ ] ABC E 

From (43) and (47) we obtain 
oAB ~ 1 EFB AC D 

Re eECDOt O~ F 

= ~ ( a A C a R  c -- aA%eOO)  , aOF = aDCgcF  (48) 

From formulas (21) and (48) it follows that in the case of lack of  dislocations, 
which means that lattice lines of the nondeformed crystal are straight lines, 
the tensor 0 An vanishes. On the other hand, vanishing of this tensor is 
equivalent to the vanishing of the adjoint curvature tensor (Part I, Section 
4). So, we can treat the tensor 0 AB as the measure of  bending of  lattice 
metric lines and we will call it the b e n d i n g  tensor  of these lines. 

The curvature-twist t e n s o r  KAB and the bending tensor a An are con- 
nected by the following relation: 

A K B eBCD OADuC (49) 
where _u is a Killing vector field and KAB is defined by (38) and (44). The 
tensor of dislocation density oL AB [formula (21)] should satisfy the equation 

(~ A OL A B = 0 (50)  

which is an identity following from the vanishing of the curvature tensor 
of  the teleparallelism connection (Minagava, 1979). Equation (50) has the 
form of a continuity equation and can be interpreted as stating that the 
dislocations cannot end in the interior of the crystal (de Witt, 197 ). 
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Let us consider the condition (34) as defining a deformable continuum 
(with or without defects of the material structure). In physical applications 
we are often interested in the problem of finding all solutions of equation 
(35) fulfilling certain additional conditions. For example, Theorem 2 of 
Section 2 gives the necessary and sufficient conditions for the considered 
metric g to describe the metric structure of a structurally uniform crystalline 
body, and at the same time describes the solutions of (35) in the form 
u = _Ea, a = 1, 2, 3. In this case the metric g can be interpreted as describing 
a distortion of the lattice that has no influence on the local metric properties 
of  the body crystal structure [cf. Part I, commentary after condition (34)]. 
If the distortion of the lattice has no influence on the global metric properties 
of the body crystal structure, then, additionally, the metric g should be flat. 
Then the teleparallelism is closed (Wolf, 1972) and the solutions _u = _Ea, 
a = 1, 2, 3, of equation (35) have the form defined by formulas (3) and (9); 
it corresponds to a self-arrangement of dislocations that does not cause 
long-range stresses (Bilby et al., 1958). From (47) it follows that in this case 
the bending tensor of metric lattice lines vanishes, though there are disloca- 
tions in the body; thus, the curvature-twist tensor also vanishes [relation 
(49)]. 

It is known that there exist such superficial arrangements of dislocations 
that manifest themselves in the bending of the crystal lattice, which is 
connected with the change of relative orientation between neighboring parts 
of  the crystal. Such distortion of the crystal structure is not accompanied 
(in the absence of an external field) by macroscopic stress fields, but it is 
accompanied by macroscopic fields of so-called couple-stresses (Kr6ner, 
1960). As a result, a crystal with dislocations reacts as a body with internal 
rotational degree of freedom [the so-called Cosserat continuum (Cosserat 
and Cosserat, 1909)]. It can be described by the imposition on the geometry 
of structural uniformity of  an additional condition in the form of equation 
(40) or, what is equivalent, the condition [cf. Eq. (49)] 

oA[Du C] = O, 0 AB ~ 0 (51) 

where 0 AB is given by (48). The couple-stresses will appear then as general- 
ized reaction forces to these constraints (cf. Drobot, 1971). Such a material 
body can be called structurally uniform of  Cosserat  type. 

5. THE GENERAL MATERIAL SPACE 

The model of the structural uniformity of crystalline body is only the 
first approximation to real crystal structure. For example, we cannot describe 
complex lattices in this way. The influence of point defects on the lattice 
and on the line defects of this lattice is not considered in this model either. 
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On the other hand, existing geometrical theories of crystal lattice defects 
usually do not go beyond the notion of linear connection (e.g., Bilby, 1968). 
Therefore we should compare, first of all, the geometry of the structurally 
uniform body described by the consistent pair (qb, g) with the geometry of 
the general linear connection. 

A Let FBc  be an arbitrary linear connection. Let us consider its decompo- 
sition in the form 

A A A 
F ~c = A Bc - KBc  

(52) 
K A A  A a = e V c e  B = - - ( V c e A ) $ B  

a a 

where V is the covariant derivative for connection FAc, AAc is the connection 
determined by teleparallelism qb having the smooth trivialization (2), and 
formulas (3) and (4) have been considered. Admission of the decomposition 
(52) does not limit the general character of the considerations, because if 
there is a defined teleparallelism qb on the manifold, then each linear 
connection on it can be represented in this way (Eisenhart, 1972). 

Let us introduce the following notations: 

V e~ -E~ = w,,Cb_Ec, V sEb = WB"b_Ea (53) 

Then 

and 

P a V B e  A = O,)abcebAe B ( 5 4 )  O)Bab ~ eBtOp by a 

+rob bec)  (55) 
a 

The mixed-type components of the connection a FBc define the geometric 
object 

-~B--IIo~;bll: 23 ~ gl(3), B =  1,2,3 (56) 

where gl(3) is the Lie algebra of the Lie group G L ( R  3) of all nonsingular 
3 x3 matrices. This geometric object is called the spinor connection 

(Srivastava, 1983). For example, if 

P 1 c 
_w~ = eB_3'p, 7p = Ih~b l t  (57) 

where the Y~b are defined by (17), then the spinor connection defines the 
connection F of the form (14), i.e., the Levi-Civita connection for the metric 
g consistent with the teleparallelism ~. 
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Let _g be the metric tensor of a metric g consistent with (I) [formula 
(7) and conditions (15), (16)]. The metric g is invariant with respect to the 
following transformation of the vector basis (_Ea): 

_E r --~ " ~ b L b a ,  E,a = LbaE b 

(58) 
_L= IIL%(X)II ~ O,(R3),  Lb a = (_L-')ab 

i.e., with respect to thr coordinate transformation 

a t e 'A  = e A L b a ,  e a = L b  a ~A (59) 
a b 

where Og(R 3) is the group conjugate in G L ( R  3) with O(R3), defined by 
representing the tensor g in the basis _Ea [formula (7) and Part I, formula 
(8)]. This means that the comparison of the geometry described by the 
general connection F with the geometry of structural uniformity requires 
taking into account the fact that two groups of transformations act on the 
manifold ~:  the group of general transformations of all coordinates 

X A = f A ( x B )  (60) 

and the matrix group Og(R 3) acting nonhomogeneously as the coordinate 
transformation group of the (anholonomic) moving frame (_E.): 

e ' A ( X )  = e A ( X ) L b a ( x )  
a b 

(61) 
Iltbo(X)ll ~ Og(R3), X = ( X  A) 

Geometric objects defined on such a space have "holonomic" indices 
A, B, C,. . . . . .  and "anholonomic" indices a, b, c, , e.g., T"A, Tbn,"A etc., 
corresponding to the rule of simultaneous coordinate transformations of 
these groups. 

The spinor connection induces, by means of the representation (55), 
the covariant differentiation in this space 

V A =OA'[-F A ( X )  (62) 

acting in accordance with the rule (Rumer, 1956; Srivastava, 1983) 
-- aA aA aA V cTbB = OcTbB + F c ( X )  TbB 

(63) 
aA pA p ,'paA .d_ l-~ A ,TaD p D T a A  Fc (X) TbB = tOcapTbB -- J- CD Jt bD ---t  CB ~t bD tOC b l  pB 

We assume that this covariant differentiation satisfies the basic condition 
of the geometric description of the crystal structure: the condition of 
covariant constancy of the distribution (1) of lattice bases [cf. Eq. (12)]. 
This means that 

V B ~ A  "~- 0,  ~TBe a = 0 (64) 
a 
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Such a geometric space can be called the general material space for a 
crystalline body with lattice defects. 

From (62)-(64) it follows that 

where 

V c T~B = V c TT~ = ~ A " " " eB D c  T~,:~, T~,ff.. = aeA.,eBTa~ ~ (65) 

V c T2~b = DcT2~b = OcTa~b + wcbpTa~P - o)cPaTiff~ (66) 

In particular, for the matrix function 

A_=llAab[[: ~ o g l ( 3 )  (67) 

the formula (66) can be written in the form 

r = D c A  = OcA + [w, _A] (68) 

and the formula (65) in the form 

V c  o A d e = A d ~ o  D c  
(69) 

Ad~(_A) = _eAe -1, _e = II (X)ll c G L ( R  3) 

which is the relation characteristic for the gauge theory; but generally the 
differentiation D c  is not related to this theory. 

The curvature of the spinor connection is described by differential 
operators PAn defined by 

PAB = [Da, DB] (70) 

These operators act on the functions (67) according to the rule 

PAB(_A) : [PAB(O)), _A] (71) 

where 

--PAB(O)) = OA~-B --~B~-A + [~-A, ~-B] (72)  

Because the decomposition (55) can be written in the form of the 
transformation 

O'e(~-A) = -eOAe- -1 -~ g-(flAg 1 (73) 

Therefore, for an arbitrary mapping 

_L= []L"bl]: f~ ~ G =  G L ( R  3) (74) 

where G is a certain matrix Lie group, the spinor connection transforms 
according to the rule 

O'e__L(~_A ) = _L~A_L-' "~ _LO'_e((.Z.)A) _L -1, _e_L = II eaatab 1] (75) 
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In particular, the rule (75) holds in the case when G - -  O g ( R  3) [see transfor- 
mations (58) and (59)]. Hence, and from the formulas (67)-(69), it follows 
that _Pan(to) also transforms according to the rule of  gauge transformation 
(Srivastava, 1983): 

-PAB(to) ~ AdL(_PAB(to)) = _L_PAB(to)_L -1 (76) 

The indices in the object 

are all tensorial and 

RabCD( to ) = ( PcD( to ) )ab (77) 

RBcDA(F) : ~BeARAbcD( to ) ( 7 8 )  
a 

where RBcDA(F) is the curvature tensor of the connection FAc. So, we can 
call -PAB(to) the spinor curvature tensor (Srivastava, 1983). But it should be 
taken into account that here the Bianchi identity 

DA_PBC (to)q- Dc_PAB ( to ) q- DB_PcA ( to ) = 0 (79) 

is not generally fulfilled. 

6. POINT DEFECTS AND GEOMETRICAL INTERACTIONS 

Let (alp, g) be a consistent pair and F an arbitrary linear connection. 
Let us denote 

QCAB : VCgAB (80 )  

where V is the covariant derivative for the connection F. From (52), (55), 
(65), and (66) it follows that 

a b 
QCAB = 2Kc(AB) = eaeBDCgab, KCAB = KcADgD, (81) 

and 
1 Wc(ab) = --2Dcgab, WCab : tocPbgpa (82) 

Let us denote 

RABCD(F , g) = gDERABc E (83) 

The so-called third identity for the curvature tensor RABcD(F) of the connec- 
tion F has the form (Schouten, 1954) 

RAB(CD)(F, g)  = --V[AQB]cD -- SAB E ( r )  QECD (84 )  

where SABC(F) is the torsion tensor of the connection F and [from (52)] 

SABC(F)=F~AB]--SABC(C~)--K[AB] C, SAB C =ARAB] c (85) 
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The condition 

RAmCD)(F, g) = 0 (86) 

is equivalent to the condition that tensor QCAB in the form (Giinther and 
Z6rzwski, 1985) 

QCAB = --2VcEAB, EAB = ESA (87) 

which, by (80), can be written in the form 

VCGAB = 0 ,  GAB =gAI3 + 2EAB (88) 

From (65), (66), (81), (82), (87), and (88) it follows that 

to C(ab) = DcEab (89) 

and 

where 

DcGab = 0, Gab = gab + 2 Eab (90) 

and 

_(3= G_ (X, t) = G~(X, t)Ea(X)| Eb(X) 
= Cab(X, t)E'a(X)| (96) 

where the basis (_E'~) is defined by (58) and (59) with the change of Og(R 3) 
for GL+(R3). If 

SAV C ((I D) = 0 (97) 

a b 
EAB : eA eBEab 

(91) 

GAB a b a b = eAeBGab, gAB = eAeBgab 

If GAB is additionally a metric tensor, the connection F is the Cartan 
connection for GAB and can be represented in the form (Schouten, 1954) 

FAc = FAc(G) + SBcA(F) + 2sA(Bc)(F, G) (92) 

where 

SABc (F, G) = GDAGEcSDBe (F) (93) 

and FAc(G) is the Levi-Civita connection for GAB. 
Let us consider the metric tensor GAB defined in the following way. If 

C(X, t) is a right Cauchy-Green tensor induced on the body by its motion 
[Part I, formulas (70) and (71)] and 

C_ (X, t)= C~b(X, t)Ea(X)| (94) 

then 

Gab = Gab(X, t)= L f ( X ) L f  (X)Ccd(X, t) 
(95) 

_L(x)  = IIL~ ~ GL+(R 3) 
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then the vectors _Ea, a = 1, 2, 3, create a natural basis of a certain curvilinear 
coordinate system on ~ (Part I, Section 4) and in the case when _L is a field 
of nonorthogonal matrices such that 

RABcD(G_ (X, t)) ~ 0 (98) 

the metric tensor GAB describes, according to Kr6ner's approach (Kr/Sner, 
1985; Giinther and 7,6rawski, 1985), the influence of point defects on the 
elastically deformed crystalline body. Let us observe that the transformation 
(58) [with the change of Og(R 3) for GL+(R3)] can be considered as 
describing a certain teleparallelism ~'. With that transformation, the metric 
tensor g consistent with qb passes (according to the postulate of metric 
uniformity; Part I, Section 3) to the metric tensor _g' of the form 

g_'(X) = gabE'a(X)|  E 'b (X)  = g ' b ( X ) E a ( X ) |  E b ( X )  
(99) 

g 'b (X)  = L ~ ( X ) L b  d (X)gcd 

which is qb'-parallel, but in general inconsistent with qb'. Up to now, the 
case when only dislocations occur in the body has been described by a 
loosely defined teleparallelism, independent of the metric structure of the 
distorted lattice. With such an approach teleparallelism the qb' appearing 
in Kr/Sner's description of point defects does not have a univocal physical 
interpretation. In the proposed approach based on the application of the 
consistent pair (~, g) this ambiguity is eliminated. 

We see that the t e n s o r  KC(AB ) of the form [cf. (81) and (90)] 

a b 
KC(AB) = -- e A eBDcEab (100) 

can be considered as describing the influence of point defects and the elastic 
field on the geometry of structural uniformity of the crystalline body. The 
spinor connection related to this case has the form [cf. (82)] 

(.OAab = 7"gAab -~ g a P D A E p b  , ";7'Aab = gaPtOA[pb] ( 1 0 1 )  

If  we do not consider interactions between dislocations, point defects, and 
the elastic field, then in the case 

Eab =0 (102) 

it follows from (57) that 

P 
a 1 a 

q]'A b = 5 e A Y p b  (103) 

and from (81), (87), (91), and (102) it follows that 

QCAI~ = 2Kc(AB) = 0 (104) 
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Hence, and from (81) and (82), it follows that the considered dislocations 
are in reality the disclinations 

_'ffA = II~raabl[: 23->%(3) (105) 

where Og(3) is the Lie algebra of the Lie group Og(R3). In the case of the 
spinor connection of the form (101), (103) we have 

c b sABC(F) = e etogP"DalEpb (106) 

with (Yano, 1955) 

" b P Sa c ( O ) =  , c --~f eeBeATpb (107) 

The above considerations suggest that if we want to take into account 
the existence of interactions between dislocations and point defects (and 
also the processes of creation and annihilation of defects), then we should 
consider the case when 

RAB(CD)(F, g) ~ 0 (108) 

Such interactions between the defects of the lattice are called geometrical 
interactions (Gfinther and 7.6rawski, 1985). The vanishing of geometrical 
interactions only in the case of disclinations can be treated as the justification 
for the distinction of this type of dislocation. 

An example of a geometry permitting the occurrence of geometrical 
interactions, as well as their vanishing, is the Weyl-Cartan geometry [also 
called semimetric (Schouten, 1954)] characterized by the condition (81) 
and the condition 

In this case 

Dcg,,b = 2g~br ( 109 ) 

RABCD(F, g) = R AB(CD)(F, g) = O[AqOB]gco 

Geometrical interactions vanish if and only if 

~Oc = Oc~ 

If the condition (111) is fulfilled and 

1 --2~ Eab =~(e --1)gab 

then 

GAB = e-2'PgAB 

(110) 

(111) 

(112) 

(113) 
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The formula (113) means that the influence of point defects on the crystal 
structure, with [condition (105)] or without [condition (97)] disclinations, 
takes the form of the dilatation field: -2~o(X, t )>  1 means that at the point 
P c ~3 with the coordinates X = X(P) (and at the instant t), the influence 
of interstitial atoms dominates; if -2~(X,  t ) <  1, then the influence of 
nonoccupied sites in the lattice nodes (vacancies) dominates. This is the 
simplest model of the influence of point defects on the crystal structure. 

7. CONCLUSIONS 

The basic conclusion of this paper is that the pair (qb, g) consisting of 
the teleparallelism qb and the Riemannian metric g consistent with �9 is a 
geometric object realizing the following point of view: the lattice of the 
crystalline body with a continuous distribution of dislocations can be locally 
described as an ideal lattice in non-Euclidean space. This approach explains 
many problems that have been treated separately. For example, by using 
the consistent pair (qb, g) we can explain the connection of disclinations 
(dislocations of rotation type) with the geometrical interactions (Section 6) 
as well as describe the reaction of the crystal with dislocations as a body 
with internal rotational degrees of freedom (Section 4). 

The second important conclusion is that the transition from an ideal 
crystal to a crystal with (continuously distributed) dislocations can be 
described as a transition from a lattice basis consisting of Euclidean transla- 
tion to a Bravais moving frame in the form of infinitesimal g-translations 
(Section 2). If  the teleparallelism qb is closed (Section 3), then these g- 
translations span a three-dimensional real Lie algebra and the types of 
continuous distributions of dislocations are described by the classification 
of such algebras (Section 3). Such a classification of (continuously dis- 
tributed) dislocations is consistent with a topological classification of dis- 
crete linear defects of the lattice (Part I, Section 3). 

In the proposed theory there also appear geometric objects so far not 
considered in the description of dislocations: the adjoint curvature tensor 
(Section 2) and connected with it the bending tensor of the metric lattice 
lines (Section 4). They allow one to understand the regularities of the 
dislocation distributions better than (as has been done up to now) with the 
use of only loosely defined teleparallelism (e.g., Section 4). 
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